qfgl.net
当前位置:首页>>关于什么是勾股定理?历史记载有哪些?的资料>>

什么是勾股定理?历史记载有哪些?

勾股定理是一个基本的几何定理. 在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明.直角三角

勾三股四弦五 也就是三角定理

勾股定理的历史 勾股定理是“人类最伟大的十个科学发现之一”,是初等几何中的一个基本定理.那么大家知道多少勾股定理的别称呢?我可以告诉大家,有:毕达哥拉斯定理,商高定理,百牛定理,驴桥定理和埃及三角形等.所谓勾股定理,

勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方. 勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃

勾股定理趣事 学过几何的人都知道勾股定理.它是几何中一个比较重要的定理,应用十分广泛.迄今为止,关于勾股定理的证明方法已有400多种.其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话. 总统为什么会想到去证明勾股定理呢

直角三角形两直角边平方之和等于斜边平方

勾股定理引自百度词条:中国 公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”.《周髀算经》中记录着商高同周公的一段对话.商高说:“…故折矩,勾广三,股修四,经隅五.”意为:当直角三角形的两条直角边分别为3(勾

:著名的勾股定理是西周数学家商高最早提出来的,称商高定理. 早在公元前11世纪的西周初期,数学家商高曾与辅佐周成王的周公谈到直角三角形具有这样的一个性质:如果直角三角形的两个直角边分别为3和4,则这个直角三角形的斜边为5

来历及历史:1、中国,公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”.《周髀算经》中记录着商高同周公的一段对话.商高说:“…故折矩,勾广三,股修四,经隅五.”意为:当直角三角形的两条直角边分别为3(勾)和4

勾股定理: 在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定 古埃及人利用打结作RT三角形理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem). 定理: 如果直角三角形两直角边分别为a,b

网站首页 | 网站地图
All rights reserved Powered by www.qfgl.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com